Autocorrelation Techniques with Small Telescopes

Trying to beat the seeing in Eastern Kansas E. O. Wiley Yankee Tank Creek Observatory Lawrence, KS

The Challenge

 Can we image astrophysically interesting pairs in less-than-perfect and even relatively poor nights of seeing with "average" amateur telescopes?

Objectives

- Access autocorrelation data reduction techniques using a 204 mm telescope under less than ideal conditions.
- Compare the results to lucky imaging under the same conditions.
- For selected pairs, access accuracy using observed versus calculated (o-c) theta and rho

Stolen from Environment Canada

The Equipment

- Telescope: 204mm F22.5 Dall-Kirkham
- Mount: Losmandy G-11 GEM with DSC
- DMK21 video camera (640x480 pixels)
- 2x Orion shorty barlow for nominal F50
- REDUC software for data reduction

Methods - Imaging

- For each night's run
 - -Establish plate scale and orientation
 - Integration times: 8 millisecond to 66 milliseconds
 - Four videos per double with 400 1000 frames per video.
 - Or (wide pairs) 100 400 frames at up to 1 second.
 - -Convert avi files to bitmap images

Methods - Autocorrelation

- REDUC v4.7 software (Losse, 2012)
- Autocorrelation
 - Autocorrelation with enhanced spectrum
 - -Lowest correlogram of S1-S9
 - -N=4 or N=5 measures

Methods – Lucky Imaging

- REDUC v4.7
- Sort on Max signal
- Pick best 10-25% based on file size (larger % for wide bright pairs with good images)
- Stack and measure stacked image
- N= 4-5 total measures
- Save data to REDUC

F50 - 00550+2338STF 73AB 36 And, 6th mag, Dm 0.4

S5 correlogram Best 500 of 1000 16 milliseconds Nominal F50 Seeing 3 2012.953 - Autocorrelation $PA = 326.1^{\circ} \pm 0.6$ $Sep = 1.06'' \pm 0.03''$ o-c -0°7/-0"03 Muterspaugh et al., 2010

4th Interferometric Catalog Prieur et al. 2010.05 **o-c -0°6/-0"004** Mason et al. 2009.652 **o-c -0°6/-0"02**

00550+2338STF 73AB Relative Motion

STF 73AB: X|Y

00550+2338STF 73AB: Lucky Imaging

1 of 1000 frames, 16 ms, F50

2012.953 F50 Quadplex "Surface" N=5 PA = 324.4° ± 0.7 Sep = 1.05" ± 0.02"

o-c -2°37/-0"02 Muterspaugh et al., 2010

Stack of best 100 frames

00550+2338STF 73AB Recent Observations

15038+4739STF1909

44 Boo, 5th&6th mag, Dm 1

2012.953: F22.5, 8ms, S1 correlogram

2012.953: F22.5, 8ms, 40 stacked

Lucky 40/400 Quadplex - "Surface" N=4 PA = 61.3°±1.56 Sep = 1.297" ± 0.03" o-c -1°21/0"03

History versus O-C

15038+4739 STF1909 Epoch|x -from 2000 to 2012

History versus O-C

15038+4739 STF1909 Epoch|y -from 2000 to 2012

What if you have no Model? 03401+3407STF 425

Best single of 1000 33ms F50 - 2012.9274 59.9±0.7° 1.91±0.03″

Accessing o-c in Absence of Model

03401+3407STF 425: Epoch|x

Accessing o-c in Absence of Model

03401+3407STF 425: Epoch|y

Assessing o-c in Absence of Model

- Regress x and y-values including your measure on Epoch. ("true" regression - Epoch without error)
- Predicted x- and y-values = "Calculated"
- Measured values = "Observed"
- Convert predicted x- and y-values to "calculated" theta and rho
- Calculate o-c
- Example: STF 425 o-c (autocorrelation)
 - Theta 0°67
 - Rho 0"03

Rho|o-c Theta at F22.5 & F50

Rho|o-c Theta at F22.5 & F50

Conclusions

- Autocorrelation seems to work well with pixels in the apparent absence of speckles even under adverse conditions with small telescopes and modest cameras.
- For well resolved doubles autocorrelation and lucky imaging seem equally accurate up to at least 1.5-2" separation although measurement scatter is greater with lucky imaging as implemented by me in REDUC.
- Autocorrelation seems superior to lucky imaging under adverse conditions and doubles <1.5".

Acknowledgements

- Florent Losse for much advice on REDUC.
- Brian Mason and Bill Hartkopf (USNO) for honoring my many requests for data.
- Bob Royce for producing a truly exceptional set of Dall-Kirkham optics.
- Russ Genet for hours of talking "REDUC."
- All the organizers who have made this conference a success.