Autocorrelation Techniques with Small Telescopes

Trying to beat the seeing in Eastern Kansas
E. O. Wiley

Yankee Tank Creek Observatory
Lawrence, KS

The Challenge

- Can we image astrophysically interesting pairs in less-than-perfect and even relatively poor nights of seeing with "average" amateur telescopes?

Objectives

- Access autocorrelation data reduction techniques using a 204 mm telescope under less than ideal conditions.
- Compare the results to lucky imaging under the same conditions.
- For selected pairs, access accuracy using observed versus calculated (o-c) theta and rho

Stolen from Environment Canada

The Equipment

- Telescope: 204mm F22.5 Dall-Kirkham
- Mount: Losmandy G-11 GEM with DSC
- DMK21 video camera (640x480 pixels)
- $2 x$ Orion shorty barlow for nominal F50
- REDUC software for data reduction

Methods - Imaging

- For each night's run
-Establish plate scale and orientation
- Integration times: 8 millisecond to 66 milliseconds
- Four videos per double with 400-1000 frames per video.
-Or (wide pairs) 100-400 frames at up to 1 second.
-Convert avi files to bitmap images

Methods - Autocorrelation

- REDUC v4.7 software (Losse, 2012)
- Autocorrelation
-Autocorrelation with enhanced spectrum
-Lowest correlogram of S1-S9
$-\mathrm{N}=4$ or $\mathrm{N}=5$ measures

Methods - Lucky Imaging

- REDUC v4.7
- Sort on Max signal
- Pick best 10-25\% based on file size (larger \% for wide bright pairs with good images)
- Stack and measure stacked image
- $\mathrm{N}=4-5$ total measures
- Save data to REDUC

F50-00550+2338STF 73AB 36 And, $6^{\text {th }}$ mag, Dm 0.4

S5 correlogram
Best 500 of 1000
16 milliseconds
Nominal F50
Seeing 3
2012.953-Autocorrelation
$\mathrm{PA}=326.1^{\circ} \pm 0.6$
Sep $=1.06^{\prime \prime} \pm 0.03^{\prime \prime}$
0-c -07/-0"03
Muterspaugh et al., 2010
$4^{\text {th }}$ Interferometric Catalog
Prieur et al. 2010.05 0-c -06/-0"004
Mason et al. 2009.652 0-c -06/-0"02

00550+2338STF 73AB Relative Motion

00550+2338STF 73AB: Lucky Imaging

1 of 1000 frames, 16 ms, F50

2012.953 F50

Quadplex
"Surface" $\mathrm{N}=5$
$\mathrm{PA}=324.4^{\circ} \pm 0.7$
Sep $=1.05^{\prime \prime} \pm 0.02^{\prime \prime}$
$0-c-2^{\circ} 37 /-0^{\prime \prime} 02$
Muterspaugh et al., 2010

[^0]
00550+2338STF 73AB Recent Observations

15038+4739STF1909

 44 Boo, $5^{\text {th }} \& 6^{\text {th }}$ mag, Dm 1
2012.953: F22.5, 8ms, S1 correlogram

2012.953: F22.5, 8ms, 40 stacked

Autocorrelation 400
$\mathrm{N}=4$
$\mathrm{PA}=62.7^{\circ} \pm 0.13$
Sep $=1.282 \pm 0.004$
o-c -04/0"04

Lucky 40/400
Quadplex - "Surface" N=4
PA $=61.3^{\circ} \pm 1.56$
Sep = 1.297" $\pm 0.03^{\prime \prime}$
o-c - $1^{\circ} 21 / 0^{\prime \prime} 03$

History versus O-C

15038+4739 STF1909
Epoch|x -from 2000 to 2012

History versus O-C

15038+4739 STF1909
Epoch|y -from 2000 to 2012

What if you have no Model? 03401+3407STF 425

Best single of 1000 33 ms

S3 correlogram
F50-2012.9274 59.9 $\pm 0.7^{\circ} 1.91 \pm 0.03^{\prime \prime}$

Accessing o-c in Absence of Model

03401+3407STF 425: Epoch $\mid x$

Accessing o-c in Absence of Model

Assessing o-c in Absence of Model

- Regress x and y-values including your measure on Epoch. ("true" regression - Epoch without error)
- Predicted x - and y-values = "Calculated"
- Measured values = "Observed"
- Convert predicted x - and y-values to "calculated" theta and rho
- Calculate o-c
- Example: STF 425 o-c (autocorrelation)
- Theta $0^{\circ} 67$
- Rho 0"03

Rho|o-c Theta at F22.5 \& F50

Lucky Imaging

Rho|o-c Theta at F22.5 \& F50

Autocorrelation

Conclusions

- Autocorrelation seems to work well with pixels in the apparent absence of speckles even under adverse conditions with small telescopes and modest cameras.
- For well resolved doubles autocorrelation and lucky imaging seem equally accurate up to at least 1.5-2" separation although measurement scatter is greater with lucky imaging as implemented by me in REDUC.
- Autocorrelation seems superior to lucky imaging under adverse conditions and doubles <1.5".

Acknowledgements

- Florent Losse for much advice on REDUC.
- Brian Mason and Bill Hartkopf (USNO) for honoring my many requests for data.
- Bob Royce for producing a truly exceptional set of Dall-Kirkham optics.
- Russ Genet for hours of talking "REDUC."
- All the organizers who have made this conference a success.

[^0]: Stack of best 100 frames

