

or, Why Buy One Ridiculously Complicated Interferometer When You Can Buy Two at Twice the Price?

> Dr. Gerard van Belle Lowell Observatory February 10, 2013

Caveat Emptor

Example Astronomer Simplification:

- A number of assumptions will be made herein
- A number of simplifications will be made herein
- And I'll probably make a few outright errors, which I will attempt to cover up with an aura of smug selfconfidence

Cows are, to zeroth order, spherical in shape.

PRIMA: The Dual-Feed Facility for VLTI

- PRIMA = Phase Referenced Imaging and Microarcsecond Astrometry
- "Two interferometers in one" tied together by laser metrology
- An instrument or a facility?
 - A bit of both
- Enables 3 new modes:
 - Stand-alone instrument: Astrometry
 - Facility feeding AMBER/MIDI:
 - Faint star science (like single-aperture NGS)
 - Phase-referenced imaging

What VLTI-PRIMA looks like in practice

Motivations for PRIMA

- Astrometry: Extrasolar planet detection
 - Initially at 70-100µas level
 - Ultimate performance: ~30µas level
 - No sin i ambiguity in masses
 - Increased sensitivity for VLTI
 - Akin to 'Natural guide star' AO
 - Increase in coherence time from ~2ms to ~1000ms

How does PRIMA do this?

PRIMA Architecture

- Auxiliary Telescopes (ATs)
 - Collects starlight
- Star Separators (STSs)
 - Picks out two sources in a 120" FOV
 - Tip-tilt field stabilization (STRAP)
 - Metrology endpoint
 - Main Delay Lines
 - Provide optical path delay to both starlight beams
- Differential Delay Lines (DDLs)
 - Provide optical path delay to individual starlight beams
 - Fringe Sensor Units (FSUs)
 - Twin fringe trackers for starlight
 - PRIMA Metrology (PRIMET)

- Tracks residual tip-tilt errors in lab
- MARCEL
 - Calibration source

PRIMA Architecture

- Auxiliary Telescopes (ATs)
 - Collects starlight
 - Star Separators (STSs)
 - Picks out two sources in a 120" FOV
 - Tip-tilt field stabilization (STRAP)
 - Metrology endpoint
- Main Delay Lines
 - Provide optical path delay to both starlight beams
- Differential Delay Lines (DDLs)
 - Provide optical path delay to individual starlight beams

Ties two starlight beam paths together

- Fringe Sensor Units (FSUs)
 - Twin fringe trackers for starlight
- PRIMA Metrology (PRIMET)

Infrared Image Stabilizer (IRIS)

- Tracks residual tip-tilt errors in lab
- MARCEL
 - Calibration source

RED: New for PRIMA

PRIMA Commissioning

www.xkcd.com

- All this technology sounds very complicated
 - When's it going to be ready?
 - See cartoon above
 - Let's take a look at how it's been going

Initial Steps (early 2009): PRIMA Single FSU Fringe Tracking

Phase delay Group delay SNR Flux Lock status

FSUA+MIDI On-Axis Fringe

Engineering test of PRIMA+MIDI

- MIDI can provide fringe tracking (FTK) for itself
- Same function can also be provided by PRIMA
- Tests carried out in July, Sept 2009; Jan 2011 commissioning runs
- Caveat emptor: Currently a nonstandard mode
- Promising results
 - FTK errors (group delay residuals) are an order of magnitude less with PRIMA FTK
 - Also, fringes detected for targets too faint for MIDI FTK (F₁₂≈0.5Jy)
 - Well below the AT limit of 20Jy
 - Calibration unclear, though, due to open photometry questions – work in progress on that front
- Future work
 - OPC assigned time from GTO to test on a science target in risk-sharing mode

PRIMA Commissioning in late 2009, early 2010: Establishing Dual Beam Functionality

- PRIMA's unique strength will be through simultaneous interferometry of 2 stars at once
- Four starlight beams (2×2 stars) stabilized in tip-tilt for the 1st time in VLTI lab in Paranal in Dec 2009
 - Further testing took place in Feb 2010
 - Dual-star astrometry then follows with 2×FTK+metrology
 - Development of this functionality into a fully operational capability was the major goal of P85 commissioning work

Sub-system punchlist items remain, along with system integration challenges

July 2010: Dual-Feed FTK

Late 2010: Dual Feed FTK with PRIMET Active

PRIMET and dual FSU fringe tracking successful in Nov 2010

Led to fully operational astrometric observing in Jan 2011

- PRIMET+FSUA(1)+FSUB(2) swap→ PRIMET+FSUA(2)+FSUB(1)
- No loss of PRIMET tracking during swap

PRIMA Astrometry

- First results
- Twin traces show metrology signal before/after PS-SS and SS-PS swap
- Lower plot shows residuals of simple astrometric fit
- Night-to-night repeatability of 75mas
 - Not bad, except goal is >75µas
 - Does not include fringe error signal, other known error terms
 - Clearly some systematics at ±10µm level not accounted for yet
 - Need to be at <1µm for ~ 75µas astrometry

Astrometry Mode Example: PTI Dual-Star Observations of 61 Cygni

- Palomar Testbed Interferometer (PTI)
 - NASA-JPL dual-beam testbed
 - K-band, 109m baseline
 - Operated 1997-2009
 - Very limited sensitivity
 - 61 Cygni
 - Nearby K-dwarf Visual Binary (K~2.5)
 - ~30" separation
 - ~ 650 yr period eccentric orbit
 - 'God's gift to dual-star testing' (if you live in the N hemisphere, δ=+38°)

We have it on Good Authority (Geoff Marcy) that there is *nothing* going on in this system WRT planets

PTI Astrometry 61 Cygni I.

PTI Astrometry on 61 Cygni II.

61 Cyg 1999 Declination-Only Data

OWELL

Experimental Verification

Fig. 2. Narrow- and very-narrow-angle astrometric error for several baseline lengths using measured Mauna Kea turbulence profiles and an integration time of 1 h From Shao & Colavita 1992

Still to come: UT PRIMA Observing Bring on the big glass

Additional Applications

PRIMA Co-Phasing Demonstration

magnitudes(!)

Compelling demo of dualstar capability

SAO221759 (m_K =7.1) stabilized by HD87640 (m_K =4.8, 6.6" distant) WX: 0.87" / 10ms 2011.02.05 VLTI PRIMA Plot produced with immediate post-processing

Novel Ideas for PRIMA Observing: Planet Transits, GR Effects

- Planet transit host stars
 - Transit event induces a photocenter shift on the star
 - Effectively a perfectly black 'starspot'
- Example case: HD189733
 - 0.376±0.031 mas (CHARA, Baines & van Belle et al. 2007)
 - Transiting planet diameter of ~60µas
 - Ratio of the areas indicates a shift of ~5uas on star centroid
 - This may be difficult
- Direct detection of GR effects
 - Measure astrometric shifts due to nearby passage of Jupiter, other large solar system bodies
- Weighing solar system objects
 - Precision astrometry of orbits

Characterization of Exoplanets: Direct Observations of Transits

- CHARA, NOI can observe exoplanet transits
- Planet's shadow is 'perfect' star spot
- λ-specific observations → atmospheric composition
 - Extreme challenge: ΔCP~0.1-0.01°

TODAY'S LESSON :

- 1. Interferometry is hard
- 2. Dual-beam interferometry is insane

Still

awake?

0

3. Initial results are challenging but encouraging

Any questions?

