LIGHT BUCKET ASTRONOMY

Experiments with High-Speed Cameras

Bruce Holenstein

2010-2011 Alt-Az Initiative Hawaii Conference on Light Bucket Astronomy

Agenda

High Time Resolution Astronomy

- Lunar Occultations
- Flare stars, stellar oscillations
- Scintillation studies
- Lucky imaging
- Requirements
- Some Models Tried
- Gaussian Kernel Simulations
- Lucky Imaging Experiment

Fast Cameras

- Requirements
 - Low noise, high sensitivity
 - 300Hz BW & up
 - Affordable/replicable/portable
 - CCD, CMOS, vs.emCCD
 - Binning/Region of interest processing
 - Interfaces: Video, USB, GigE
 - Bandpass: Visible, NIR

Fast Cameras 30fps & up

- Brand/products
 - SuperCircuits 164CEX-2 (CCD)
 - Opticstar PL-131 (CMOS)
 - JAI/Pulnix TM-6740GE (Kodak KAI-0340 CCD, GigE)
 - Watec (Wat-902H2 Ultimate)
 - Many others: Andor, Cook Corp, MallinCam, Vision Research, Point Grey, Dalsa, Optronics, Xenics, Allied Vision Tech, Photon Focus, Qimaging, DRS Data & Imaging, Imperex, Prosilica,, Lumenera (SKYnyx2-2), Astrovid (Stellacam)

Camera tests

Test platforms
C8 SCT
N18 f/4 GEM
0.66, 0.5 FRs
Lowland suburban setting

Opticstar CMOS

Micron MT9Moo1 CMOS
Low sensitivity vs. CCD
<8th mag @3ofps - 18"N f/4
13ofps max attained rate

Table 1: Key Performance Parameters

Par	ameter	Typical Value		
Optical format		1/2-inch (5:4)		
Active imager size		6.66mm(H) x 5.32mm(V)		
Active pixels		1,280H x 1,024V		
Pixel size		5.2µm x 5.2µm		
Shutter type		Electronic rolling shutter (ERS)		
Maximum data rate/		48 MPS/48 MHz		
master clock				
Frame	SXGA	30 fps progressive scan;		
rate	(1280 x 1024)	programmable		
ADC resolution		10-bit, on-chip		
Responsivity		2.1 V/lux-sec		
Dynamic range		68.2dB		
SNR _{MAX}		45dB		
Supply voltage		3.0V-3.6V, 3.3V nominal		
Power consumption		325mW at 3.3V;		
		Standby 275µW		
Operating temperature		0°C to +70°C		
Packaging		48-pin CLCC		

Opticstar PL-131 / AG-131 COOLAIR High Speed Video Cameras

Typical IOTA CCD

Cameras30 fps EIR/CCIR

- SuperCircuits 164CEX-2
 - Very sensitive but AGC cannot be controlled
 - Cooled heat sink helps some
- Watec Wat-902H2 Ultimate
 - ¹/₂-in. CCD w/ AGC or manual gain
 - "Ultimate" is best model
- Owl 0.5x C-mount and focal reducer
- Flock and mask

164CEX-2

Wat-902H2 Ultimate

JAI/Pulnix 6740 GigE

- Industrial camera Gigabit Ethernet
- Kodak KAI 0340 CCD, up to 3200fps
- Unit gets warm added TEC cooled heat sink
- Frustrating gain limits can "trick" camera to give up more gain on B-tap

JAI 6470GigE

Engine Port Communication	Grabber	Pixel	Image	Grabber	Extensions	RGB Filter	6740GE
Exposure Control Mode Async Shutter V Shutter Speed Direct Shutter Value H	Gain Sr A(dB) 21.91 B(dB) 34.52 [No chan	ettings 5.98 5.98 5.98 te:On Ch nel B alig Channe	iannel Bal gns to cha I Balance	21.96 21.96 ance, nnelA)	Offset I A Cha Version Camera VN9021	evel 0 innel B continu adjusts to cha	511 Jously auto nnel A
Scan Modes Partial Scan Area C · 224x480(partial) Binning 1x2 Pixel Output: 224 x 240 Memory Pages 1 Write Page	Looku Pos Neg TableS Uneal X1 255 X2 255	p Table tive election Y1 255 Y2 255	25] 0] 0	5			

Speckle saturation & mirror aberrations

JAI 6740 – 304-fps, 4x4 binning, sat. present from refocused speckles (even with defocus & reducing gain). Mirror aberrations spread each speckle over multiple pixels improving linearity.

Andor LUCA-S

emCCD type

- Greatly reduced e⁻ read noise when operated with multiplication turned on
- Tests pending

658 x 496 (VGA) 10-μm pixel Size Image Area 6.58-mm x 4.96-mm Well Depth (e-, typical) 26000 Read Noise (e-, typical)<1 to 15 @ 13.5MHz

Texas Instruments TC247SPD

Dark Current @ -20°C: 0.05 e'/pix/sec

Maximum frames per second*7

	Array Size					
Binning	658 x 496	256 x 256	128 x 128			
1 x 1	37.2	69.0	127.2			
2 x 2	70.7	126.4	218.8			
4 x 4	128.7	216.5	341.3			

IMAGING

Andor LUCA-S emCCD

Frank Suites, Bruce Holenstein, Russ Genet collaboration on future Alt-Az book chapter

Genet 1-m optical head

- Two SBIG ST-402
 Meade flip mirror
 Dichroic beamsplitter
- Microfocuser

Gaussian Kernel I

Moon image from web

50x50 Gaussian Kernel applied to approximate f/4

Above : Russ Genet's spherical 1-m f/4 w/no SA correction

With 4x reduction expected from Tong Liu's corrector design

Gaussian Kernel II

Albirio pair – 35" apart

 Middle and right images correspond to the lunar ones on the previous slide.

Lucky imaging with Light Bucket

- Keep just 2%, but which?
 - Use atmosphere to conjugate the mirror aberrations
- Defocused moon video from C8 SCT processed with Registak5 seems to work

Contact

Email: <u>bholenstein@gravic.com</u>

- Initiative Website www.AltAzInitiative.org
- Yahoo Discussion Group -<u>http://groups.yahoo.com/group/AltAzInitiative</u>

More details: *The Alt-Az Initiative: Telescope, Mirror, & Instrument Developments*, eds. Genet, Johnson, & Wallen, (Payson, AZ: Collins Foundation Press) 2010