

Observing Trans-Neptunian Objects with Portable Telescopes

Marc W. Buie Southwest Research Institute 2011 Jan 1

Observing Basics

 Reflected light observations require 4-m class telescopes (or better)

- Typical size D=100km
- Apparent brightness R~23.5
- Occultations
 - Measure size as object passes in front of star
 - Telescope size depends on brightness of star
 - 11-in (28cm) can reach R~13

- Timing measurement, not photometry

Occultations – Figures of Merit

Size measured by (event duration / velocity)

- D=100km, v=20km/sec, t=5 sec
- $-\sigma_{D} \le 10\%$ implies $\Delta t \le 0.5$ sec

Size constrains albedo

- Apparent brightness known
- $-\sigma_{D} \le 10\%$ implies $\sigma_{A} \le 3\%$

Currently ~500 candidate TNOs

 R~13 mag limit implies ~2-4 events per year from a single "location"

Occultations – Strategy 1

- RECON Coordinated fixed stations
 - Joint project with John Keller, CalPoly
 - 40 stations, community hosted
 - IOTA contributions as desired
 - No travel, let shadow come to the network
 - Baseline system ~\$4k/station
 - Celestron 11
 - Watec 902H
 - GPS video overlay
 - Digital DVR

- 40 stations
- Mean spacing ~50 km
- Community/school based
- Citizen scientists
- John Keller Educational coordination
- Marc Buie Scientific coordination
- 1-2 events per year
- 2 sites see event

Occultations – Strategy 2

- Go to shadow portable telescopes
 - Feasible only for best orbits and largest objects
 - Intensive prediction effort needed for each event
- 1-m class portables
 - Limiting mag drops to R~16 (compared to 11in)
 - 40x increase in candidates
 - Comparable to RECON for large TNOs
 - Can fill in gaps between large fixed telescopes

Instrumentation

- High quantum efficiency cameras always good
- Fast readout goal is zero deadtime
 - Video or frame-transfer best
- Time-tagged images (≤1ms) required
- Lower cost = more stations = better results
- Photometry (≥12bits/pixel)
 - Needed for atmospheric detection/study
 - Not necessary for size on airless bodies